Strongly compact algebras associated with composition operators
نویسندگان
چکیده
An algebra of bounded linear operators on a Hilbert space is called strongly compact whenever each of its bounded subsets is relatively compact in the strong operator topology. The concept is most commonly studied for two algebras associated with a single operator T : the algebra alg(T ) generated by the operator, and the operator’s commutant com(T ). This paper focuses on the strong compactness of these two algebras when T is a composition operator induced on the Hardy space H by a linear fractional self-map of the unit disc. In this setting, strong compactness is completely characterized for alg(T ), and “almost” characterized for com(T ), thus extending an investigation begun by Fernández-Valles and Lacruz [A spectral condition for strong compactness, J. Adv. Res. Pure Math. 3 (4) 2011, 50–60]. Along the way it becomes necessary to consider strong compactness for algebras associated with multipliers, adjoint composition operators, and even the Cesàro operator.
منابع مشابه
Weighted Composition Operators Between Extended Lipschitz Algebras on Compact Metric Spaces
In this paper, we provide a complete description of weighted composition operators between extended Lipschitz algebras on compact metric spaces. We give necessary and sufficient conditions for the injectivity and the sujectivity of these operators. We also obtain some sufficient conditions and some necessary conditions for a weighted composition operator between these spaces to be compact.
متن کاملWeighted composition operators between Lipschitz algebras of complex-valued bounded functions
In this paper, we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces, not necessarily compact. We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators. We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.
متن کاملLinear operators of Banach spaces with range in Lipschitz algebras
In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.
متن کاملCompact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملCompact composition operators on certain analytic Lipschitz spaces
We investigate compact composition operators on ceratin Lipschitzspaces of analytic functions on the closed unit disc of the plane.Our approach also leads to some results about compositionoperators on Zygmund type spaces.
متن کامل